
NOTATION 

u(x), d is t r ibut ion cu rve  for  m o i s t u r e  content ove r  sample  height; x, coordinate  m e a s u r e d  along height of 
sample  with x = 0 at bottom of sample  holder;  P0, sample  densi ty;  G, G 1, G 2, m o i s t u r e  flow densi t ies ;  am,  
m o i s t u r e  diffusion coeff ic ient ;  6, m o i s t u r e  thermodif fus ion coeff icient ;  T, absolute value of t e m p e r a t u r e  
gradient ;  t, t ime;  | t e m p e r a t u r e ,  L, sample  height. 
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The p rob lem of the opt imum control  of p r o c e s s e s  of conjugate heat  and m a s s  t r a n s f e r  during 
dr.ving is  solved for  the case  when the control l ing p a r a m e t e r  is the t e m p e r a t u r e  of the drying 
agent and the quality c r i t e r ion  is  the heat expenditure.  

Despi te  the fact  that  the s t ruc tu re  of the s y s t e m  of di f ferent ia l  equations descr ib ing  the p r o c e s s e s  of 
heat  and m a s s  t r a n s f e r  during drying is  well  known [1], the use of ma thema t i ca l  methods of opt imizat ion of 
drying p r o c e s s e s  is compl ica ted  by a number  of f ac to r s ,  among which one mus t  include the absence of 
analyt ical  exp re s s ions  for  the coeff ic ients  of the equations which a re  functions of the p a r a m e t e r s  of the drying 
p r o c e s s  and the absence  of sufficiently re l iab le  methods of optimization.  Even if analyt ical  express ions  for  the 
coeff ic ients  of the s y s t e m  a re  known, the i r  substi tut ion into the equations of the sy s t em so compl ica tes  the 
l a t t e r  that one is  often not able to use exact  methods  of optimization.  The r ep l acemen t  of the var iab le  coef-  
f ic ients  of the sy s t em  by cons tants  r educes  the accuracy  of the ma thema t i ca l  descr ip t ion  of the p r o c e s s  and in 
a number  of c a s e s  leads to the loss  of the connection between the control led and the control l ing p a r a m e t e r s ,  
which e l imina tes  the poss ib i l i ty  of opt imizat ion using the given model.  In this connection the development  of 
approx imate  methods  of opt imizat ion for  a sy s t em of equations with var iab le  coeff ic ients  is  an urgent  task.  

It is known that the drying p r o c e s s  in the gene ra l  c a se  is  desc r ibed  by a s y s t e m  of different ia l  equations 
of conjugate heat  and m a s s  t r a n s f e r  p roposed  by A.V. Lykov [2] inwhich the coeff ic ients  to the pa r t i a l  de r iva t ives  
a re  combinat ions  of the t he rmophys i ca l  and the rmodynamic  c h a r a c t e r i s t i c s  of the m a t e r i a l  being dried. F o r  
each  concre te  p r o c e s s  they a re  different  functions of the p r inc ipa l  drying p a r a m e t e r s :  the t e m p e r a t u r e  and 
m o i s t u r e  content. 

By replacing these  functions by constants  we obtain a new s impl i f ied  sy s t em of equations with constant  
coeff ic ients ,  the solution of which is  cons iderab ly  simplified.  

We will dis t inguish a c l a s s  of these  s impl i f ied  s y s t e m s  of equations,  each of which has  a solution, and 
for  one of the s y s t e m s  we will find an approx imate  method of solution of the p rob lem of the opt imum control  of 
drying p r o c e s s e s .  
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Let  us examine the main idea of the method for  a one-dimensional  system. 
p roces s  of convective drying with t r a n s v e r s e  supply of the drying agent relat ive to the motion of the mater ia l .  
The p a r a m e t e r s  of the mate r ia l  and the drying agent are  distr ibuted along the x coordinates  along the motion 
of the ma te r i a l  and depend on the t ime T. 

We will consider  a nonsteady 

As the initial s y s t e m w e  take the sys tem of differential  equations of heat and mass  t r ans fe r  in the ab- 
sence of an overal l  p r e s s u r e  gradient  [1]: 

O__uu = ku V2 u + kl,v~T i 
O~ (1) 

0 u  = k~ 1 V~ u + ~,T 
03 

The coefficients to the par t ia l  der ivat ives  in the boundary conditions are also replaced by constants in 
the construct ion of the simplified sys tem [2]. As the control led pa rame te r s  we take the mois ture  content u of 
the ma te r i a l  and i ts  t empera tu re  T, and as the controll ing p a r a m e t e r  we take the t empera tu re  a of the drying 
agent, which we will seek as a function of the t ime T and the coordinate x, which var ies  in the region 0 <- x -< l .  
The coefficients  of the sys tem (1) and of the boundary conditions a re  functions of the coordinates  and of the 
p a r a m e t e r s  entering into the sys tem:  

k = k ( T ,  x, u, ~). (2) 

Certain l imitations are  imposed on the p a r a m e t e r s  of the sys tem in accordance  with technological 
requirements :  

(3) uEX, T E Y ,  ~zEU. 

The cr i ter ion-of  optimality is writ ten in the fo rm of an integral  functional: 
l T* 

�9 . . O x  ' O r "  O x '  -~'cz'dr'dx, . (4) 
0 0 

where T* is the drying time. 

We divide the segment  [0, l]  into n equal pa r t s  0 < h < 2h < . . .  <nh =l  and the segment  [0, T*] into m 
par t s  0 < hi < 2 h i < . . . < m h l  =T*. I n t h e  p roce s s  the space- - t ime region G= [0 <- x -< / ,  0-<-<7 < T*] isdivided 
into subregions AGs is = 1 , . . . ,  nm), which we number  as follows: Oftwo regions the one with the la ter  t ime 
segment  will be subsequent, while for  equal t ime intervals  the region whose spatial interval  is far ther  f rom 
the origin of coordinates  is subsequent. 

We formulate  the problem of optimization as follows: AmongaU possible controls  a (% x) to find that 
for  which the corresponding solution of the sys tem of equations (1) of the mathemat ical  descript ion provides 
for  the minimum of the functional I and for  which the limitations (3) are  observed. In this case  the control  
is assumed to be constant  in each region AG, which provides  for the zone-wise supply of drying agent, the 
amount of which is  changed ei ther in the t ransi t ion f rom one spatial region to another or  within the l imits of 
one region but differ some t ime determined by the part i t ion made above. Since the sys tem (1) belongs to the 
selected c lass ,  the sys tem with constant  coefficients has a solution. Let  

U ~ q)l('~, X, ~) / (5) 

T = ~2 (~, x, k) ! 

be a solution of the simplified sys tem,  where its ent i re  set of coefficients is  designated through k.  

Starting f rom the fo rmal  solution (5) and Eqs. (2), we find an approximate solution of the sys tem (1) 
relat ive to u and T over  the entire space-- t ime region, and we also derive the r ecur ren t  equations needed 
later. Let  us consider  the rectangle  AGI, to the sides of which the segments  [0, h] of the s t ra ight  line T = 0 
and [0, hi] of the s traight  line x = 0 belong and in which the values of u and T are  known f rom the boundary 
conditions. By integrating we find u(~ and T(~ the mean values of u and T over the set of indicated segments,  
and substitute them into Eqs. (2). The approximate values of the coefficients of the sys tem (1) which are  

obtained take the form 

~,,. = ~ c ,  (T, x, d ~ T C~ ~'~); (~, x) E A ~ ,  (6) 
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where  a (0 denotes  the as ye t  unknown cont ro l  a in the region AG 1. F r o m  the cons t ruc t ion  of the s implif ied 
s y s t e m  it i s  seen  that  some function f r o m  the set_(2), and consequently f rom (6), c o r r e s p o n d s  uniquely to each 
of i t s  coeff icients .  Replacing each coeff icient  of k in Eqs. (5) by the cor responding  function f rom the set  (6), 
we obtain the approx imate  equations for  u and T in the region AGI: 

. =  ~ ' ~ ( ~ ,  x, . %  r ( %  ~ ( ' /  

T = "Z~ ~) (~, x, u (~ r (~ ~ "J  " (7) 

f r o m  (7) one can de te rmine  u(1) and T (~), the mean  values  of u and T in the Since ~ (1) is  constant  in AG1, 
region AG1, f r o m  the equations 

Thus 

h~ h 

u( n 1 S I w(~), x l  (-c, x, u (~ T ~~ alX))dxdx, 
hh I . 

O 0  

h t h 

T , i ) =  1 f fuf~l ) (z  ' x, u (~ T '~ r z ' l ) ) d ' r d x  �9 
hh~ 

oo 

u(l} = f~!) (u(0~, T(0), aO~) / 
TO) = f~l~ (u(0), T(0), a(l)) J" (8) 

By analogy with Eqs.  (6), using the boundary conditions for  the region AG1, we obtain the equations 

k(2)= k (2~ (x, x, u (1~, T ~I~, ~2)); (z, x) EAG.,, 

where  c~ (2)is the contro l  in the region AG z. 

Following the same  reasoning  as  for  the region AG1, we a r r i v e  at equations analogous to (7) and (8). 
By extending this p r o c e s s  fu r the r ,  we obviously a r r i v e  at r e c u r r e n t  equations val id for  each  of the regions:  

u = ~ ;  (r, x, u (~-':, T (s-z;, a u)) 

T = T'_J~ (x, x, u (s-l), T t~-'), ~(~)) , 

s =  I, . . . ,  nh; (x, ~) E AGs 

T(~)= g~)(u/'-l~, T(~-t), a(')J 

It  should be noted that  while u (s) and T(s) a r e  cons tants ,  the i r  values  essen t ia l ly  depend on ~(s) and can take 
on one or  another  value depending on the value of the lat ter .  

Le t  us cons ider  the functional (4). Obviously,  

I = Z F('c, x, u ,T ,  Ou&c ' OUox ' OTor ' --'OTox ~ d'rdx, 
s = l  AG s 

where  N = nh. 

(9) 

Substituting the values  of u and T f rom Eqs. 
N 

s = l  AG s 

Calculat ing the in tegra l ,  we a r r i v e  at the following 

N 

I = R N  
S=I  

(9) into the integrand,  we obtain 

T(o~) Ou Ou OT OT ] 
- " O x  OT Ox Oz a d'rdx. 

z 

Sum: 

G(u(S-l~, T(~-l), ~z(s)). 

Thus,  the p rob lem of the opt imum spat ia l  dis t r ibut ion of the t e m p e r a t u r e  of the drying agent ove r  the 
drying c h a m b e r  has  been reduced to the p rob l em of the s ea r ch  for  the op t imum control  of a mul t i s tage  p ro -  
c e s s  for  which the s y s t e m  (10) s e r v e s  as  the m a t h e m a t i c a l  descr ip t ion  and the sum (11) is  the opt imal i ty  
c r i t e r ion ,  with the l imi ta t ions  (3) on the p a r a m e t e r s .  F o r  the solution of p r o b l e m s  of the opt imizat ion of 
mul t i s t age  p r o c e s s e s  the m o s t  effect ive is  the method of dynamic p r o g r a m m i n g ,  using which the given problem 
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i s  solved comple te ly  [3], a r e su l t  of which is  the obtainment  of the opt imum zone-wise  dis t r ibut ion a {.s.). (s = 

1 , . . . ,  N) of the t e m p e r a t u r e  of the drying agent.  The accu racy  of the ci ted method of solution can be co~nsidered 
as  sufficient when the quant izat ion in t e rva l s  a r e  sma l l  [4]. 

In conclusion,  we note that  with a subs tant ia l  N the given method r equ i r e s  g r e a t  computat ional  work in 
which un i fo rm ca lcu la t ions  p redomina te ,  which is  convenient  for  the use  of compute r s .  A block d i ag ram of an 
a lgor i thm for  the opt imizat ion  of mul t i s t age  p r o c e s s e s  by the method of dynamic p r o g r a m m i n g ,  which is  
r ea l i zab le  on a compute r ,  i s  p r e s e n t e d  in [3]. 

L e t  us  i l l u s t r a t e  what h a s  been  p r e s e n t e d  on a concre te  example .  With some  s impl i f ica t ions  the p r o -  
c e s s  of drying of a moving l aye r  of d i s p e r s e  m a t e r i a l  in the f o r m  of infinite cy l inders  of radius  R moving in a 
continuous s t r e a m  is  de sc r ibed  by the following s y s t e m  of d i f ferent ia l  equations [5]: 

_ _  _ _ ~  ( O'u l Ou ) Ou +<o  Ou am + - -  = 0  
aT ax OTr r -~r 

, ( 1 2 )  

aT au A ( T _ = ) _ f d  ( a~  a f t )  01: + o - ~ - + - ~  ..-~. + o ~ - -  = 0  

where  

with the boundary conditions 

and the in i t ia l  condit ions 

fi(~, x) = 

R 

-~-  ru(T, x, r) dr, 

o 

u (T, O, r) = u(~ (T, r), 

au B 
- -  ('~, x, R) = - -  (u~ - -  %) 
OX a m 

Ou 
O-T (x, x, O) = 0 fsymrn,try condition) 

T (T, 0) = fl (x) 

(13) 

u = (0, x, r ) =  Uo (x, r) 

T = (0, x) = h (x)- 

H e r e  r i s  the coordinate  f r o m  the axis  of s y m m e t r y  of a cyl inder  to i ts  sur face  (0 --- r --< R), x is  the coordinate  
along the drying c h a m b e r  (0 -< x <- l), and u R = uff ,  x, R). All the coeff ic ients  in (12) and (13) a re  functions 
of the type of (2). The following l imi ta t ions  a r e  imposed  on the p a r a m e t e r s :  T f f ,  x) _< T m a x  = const ,  

u(x, l) = Uout(X) is the output moisture content, / �9 (14) 
~min < Gr (T, X) ~ arnax (~min, (Zmax am constants) / 

We fo rmula t e  the opt imizat ion p rob lem as  follows: Amoug al l  poss ib le  dis t r ibut ions of the t e m p e r a t u r e  
of the drying agent a f t ,  x) to find that  for  which the amount of heat  supplied to the drying chamber  is  min imal  
for  a given r eg ime  of output m o i s t u r e  content. With a constant  flow ra te  of drying agent the amount of heat 
is p ropor t iona l  to the t e m p e r a t u r e  of the h e a t - t r a n s f e r  agent coming f r o m  the a i r  heater .  Consequently, the 
functional which mus t  be min imized  has  the f o r m  

l 
I =   )d ax. (15) 

o 0 

Since le t te r  designations a re  p r e s e n t e d  in place  of functional exp re s s ions  for  the coeff ic ients  of the 
s y s t e m  (12), the sy s t em  i t se l f  can s e rve  as i t s  s impl i f ied  s y s t e m  with constant  coeff ic ients  if the coeff icients  
in it  and in the boundary conditions a r e  taken as constants .  Le t  us find the solution of the s impl i f ied sys tem.  

Let  us cons ider  the f i r s t  equation of the s y s t e m  (12). We set  u(r, x, r) = u e + v(r ,  x, r) and substi tute 
it  into the equation and the boundary conditions. As a r e su l t  of the change we obtain boundary conditions 
allowing us to use  the F o u r i e r  method [7] for  the solution of this  equation. Solving by this method, we obtain 

r ~  1 

w h e r e  
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k 

0~ (X) = j" [u ~ (x, r) - -  Ue] rJ~ (k, r) dr, 
0 

R 

r (r) Jo (L, r) ~ 3" rJo (L,~ r) : N2 n , where NT~ : dr, 

0 

while J0(x) is  a z e r o t h - o r d e r  B e s s e l  function of the f i r s t  kind; '~n = ~ n / R ,  w h e r e ~ n  a re  the roots  of the equa-  
tion 

BRJ o (l~) '-- a~t~l~ (1 j) = O. 

F r o m  (16) we find 

u(x, x ) = u  e -: ~ ~ - ~  O. x - - - -  exp _ _  x . (17) 
= 0) (s 

tion 
The second equation of the s y s t e m  (12) r e p r e s e n t s  the Cauchy p rob lem,  the solution of which is  the ftmc- 

, 2Barn Z ).,J~(z,P,)) 
-~ ( A }.~ a,, c N z 

(18) 

The solutions (17) and (18) will l a t e r  play the role  of Eqs. (5). 

We reduce  the p rob lem to a fo rm allowing us to apply the method of dynamic p rogramming .  We divide 
the region G = [0 - T ~ ; ' * ,  0 -< x <- l ] into subregions  AG s (s = 1 . . . . .  nm),  as was done above. The values of 
the coeff ic ients  in the region zaG1 are  found on the bas is  of the values  of u(~ and T(~ de te rmined  f rom the 
equations 

h R h R 

= u o (~, x) rdrdx ~ u ~ (T, r) rdrdr, 
R ~- ( h  - -  h 1) . . 

0 0 0 0 

h h, 

T(O) _ 1 
h ~_ht ( f f~('+c)dx -~ .f fl(T)dT )" 

0 0 

By substituting the values  of the coeff icients  into Eqs. (17) and (18) we find the solutions uff ,  x) and T(T, 
x) in the region AG1, by integrat ing which we obtain u0) and Tfl), and so forth,  until equations of the th"pe of 
(9) and (10) a re  obtained in the ent i re  region G. Since the a f t ,  x) in each of the AG s do not depend on �9 and k, 
we have 

"C* l N 

0 0 s = l  

The equations obtained fully desc r ibe  the mul t i s tage  p r o c e s s ,  and by applying the method of dynamic 
p r o g r a m m i n g  to it we obtain the opt imum zone-wise  dis tr ibut ion of the t e m p e r a t u r e  a (T, X) of the drying agent. 

N O T A T I O N  

U, mo i s tu r e  content  of mo i s t  solid, kg/kg;  T,  t e m p e r a t u r e  of m a t e r i a l  being dr ied,  ~ T, t ime,  sec; 
am,  coeff icient  of m o i s t u r e  diffusion, m2/ sec ;  A, B, emp i r i ca l  coeff ic ients  for moving layer ;  c, specific 
heat  capaci ty  of drying agent, J / ( k g .  ~ ~,  ave rage  veloci ty  of cen te r  of m a s s  of d i spe r s e  medium,  m / s e c ;  
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Ue, equilibrium moisture content of material ,  kg/kg; ~, length of drying chamber, m; ]% concentration of dry 
substance in moist disperse material ,  kg/kg. 
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EFFICIENCY OF COOLING THERMOELECTRIC 

ELEMENTS OF ARBITRARY SHAPE 

V. A. S e m e n y u k  UDC 537.322 

The problem of the limiting efficiency of thermoelectr ic  cooling is considered in the general case 
when no limitations are imposed on the shape of the thermoelectr ic  elements and their  contact 
surfaces. 

It is well known that the permissible temperature  drop and the limiting power efficiency of thermoelectr ic 
elements of prismatic shape are  uniquely determined by the figure of mer i t  of the thermoelectr ic  materials  
and the temperature  level at which the elements operate and are independent of their  geometrical  dimensions 
[1]. It is of considerable interest  to clarify what this behavior is in the general case when no limitations are 
imposed on the shape of the thermoelectr ic  element and on its contact surfaces. 

Consider a thermoelectr ic  element (see Fig. 1) having two contact surfaces s o and s 1. We will assume 
that the heat exchange between the thermoelectr ic  element and the external sources only occurs over the sur-  
faces of the contacts, which are simultaneously isothermal and equipotential, while the remaining surface of 
the thermoelectr ic  element is adiabatically and electr ical ly insulated. We will consider the propert ies of the 
temperature  field which is established when a potential difference ul--u 0 is applied, and we will determine the 
heat flow entering the contact surfaces along the body of the thermoelectr ic  element. 

If we ignore the temperature  dependence of the physical parameters  of the thermoelectr ic  material ,  the 
temperature  field inside the region v bounded by the surface s of the thermoelectr ic  element corresponds to 
the Poisson equation 

F- 
V~-~ . . . .  (i) 

Equation (1) is uniform and there are also the nontmiform boundary conditions: 

0; "0[s,=T 1-To;  0~_~ = 0 .  (2) 
( / I t  y 
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